Name_____ Date_____

Pages (2 - 7) Due December 8th, 2011 Pages (7 – 11) Due December 9th, 2011

MAT120

Final Exam Review

1. Evaluate: $15 - 11[4 + 2(6 - 3^2)]$ 2. Evaluate: $-5^2 + (-3)^2$

3. Simplify: 6x + 2(3 - 7x)

4. Simplify: $(-3x^5y^{-3})^3$

5. Simplify:
$$\left(\frac{12x^5y^{-4}z^2}{-3xy^2z^2}\right)^2$$
 6. Solve: $2-5(x+3) = 2(4-x)$

7. Solve:
$$6x + 2(x - 4) \le 12 - 2x$$

8. Solve: $\frac{x - 2}{4} + \frac{2}{3} > \frac{1}{2} - 2x$

9. Solve: 2|x+5| - 7 = 11

11. Evaluate f(-3) given $f(x) = \frac{2x - 6}{x + 1}$

12. Find the x- and y-intercepts of the line:

$$2x - 3y = 8$$

13. Solve the system:
$$\begin{cases} y = 2x - 5 \\ 3x - 2y = 8 \end{cases}$$
 14. Find $(f - g)(x)$ given $f(x) = 2x^3 - 5x^2 + 4$
and $g(x) = x^3 - 2x^2 + 3x - 7$

15. Find (fg)(x) and (fg)(2) given f(x) = x - 2 and $g(x) = x^2 + 2x - 1$ 16. Multiply: $(2x - 3)^2$

17. Factor: $2x^2y + 14x - 3xy - 21$

18. Factor: $9x^2 + 30x + 25$

19. Factor: $x^8 + 5x^4 - 36$

20. Factor: $8y^3 + 27$

21. Solve by factoring: x(x-6) = 16

22. Simplify:
$$\frac{x^2 - 10x + 24}{16 - x^2}$$

23. Multiply:
$$\frac{8x-12}{6x-6} \cdot \frac{2x^2-x-6}{4x^2-9}$$
 24. Divide: $\frac{x^3-8}{x^2-4} \div \frac{3x^3+6x^2+12x}{x^2+8x+6}$

25. Subtract:
$$\frac{2x^2 - 3x + 7}{x^2 + 7x + 12} - \frac{x^2 - 5x + 10}{x^2 + 7x + 12}$$
 26. Add:
$$\frac{3x - 2}{x^2 - x - 6} + \frac{2x - 3}{x^2 - 9}$$

27. Simplify:
$$\frac{\frac{2}{x+3} + \frac{5x}{x^2 - 9}}{\frac{4}{x+3} + \frac{2}{x-3}}$$
 28. Divide: $(2x^3 - 3x^2 + 4x - 5) \div (2x - 3)$

29. Use synthetic division to solve

 $2x^{3} - 3x^{2} - 11x + 6 = 0$ given -2 is a solution.

30. Solve:
$$\frac{x}{x+1} + \frac{5}{x} = \frac{1}{x^2 + x}$$

32. Solve by graphing:

31. Graph the function by plotting points:

33. A rocket is launched from a 5-foot platform. The path of the rocket is modeled by the function $f(t) = -16t^2 + 96t + 5$, where f(t) is the height in feet t seconds after launch. Find and interpret f(3).

34. The length of a rectangular sign is 3 ft. less than twice the width. If the area of the sign is 54 sq. ft., find the length and width of the sign.

35. Cindy sets out on a bike ride on a windy day. Riding with the wind, she can ride 75 miles in the same time it takes her to ride 15 miles against the wind. Assume the wind is blowing a steady 10 mph. What is Cyndy's biking rate (without the wind affecting her)?

36. Peter can deliver his mail route in 6 hours. His substitute can do the job in 9 hours. How long would it take for them both to deliver the route together?

*****Show all work as necessary. Circle or underline your final answers*****

1. Find the domain of each function:

a.
$$f(x) = 2x - 3$$

b. $g(x) = 3|x + 2|$

c. h(x) =
$$2x^2 - 3x - 2$$

d. j(x) = $\frac{x - 3}{x^2 - 4x + 3}$

e.
$$k(x) = \sqrt{3 - 2x}$$
 f. $n(x) = 4^x - 2$

 $g. m(x) = \log_3(x+2)$

2. Simplify each:

a.
$$\sqrt{25x^2y^6}$$
 b. $\sqrt[3]{-16x^4y^6}$

c.
$$\frac{\sqrt[5]{x^2}}{\sqrt{x}}$$
 d. $(-8)^{-\frac{2}{3}}$

e. $\sqrt{6} \cdot \sqrt{15}$ f. $2\sqrt[3]{16} + \sqrt[3]{54}$

g.
$$\frac{\sqrt{18x^7}}{\sqrt{2x}}$$
 h. $\sqrt[3]{\frac{4}{9}}$
i. $(2-3\sqrt{2})^2$ j. $\sqrt[3]{\sqrt{5x}}$

k.
$$(3 + 5i) - (7 - 3i)$$

l. $\frac{2 + 3i}{1 - 2i}$

3. Solve each:

a. $\sqrt{2x+4} = 6$ b. $x + \sqrt{2x-3} = 3$

c.
$$2(x-3)^2 = 16$$

d. $3x^2 = 10x + 8$

e.
$$(2x-1)(x+2) = 4$$

f. $\frac{5}{x+1} + \frac{x-1}{4} = 2$

g.
$$x^{\frac{2}{3}} - x^{\frac{1}{3}} - 12 = 0$$
 h. $2x^2 + 5x > 3$

3. Solving, continued...

i.
$$\frac{x+3}{x-4} \le 5$$
 j. $4^{x+1} = \frac{1}{8}$

k.
$$\log_3(2x+5) = 2$$

l. $\log(x+1) - \log(x-2) = \log 3$

m.
$$5^x = 14$$

n. $\log_2 x + \log_2 (x - 2) = 3$

4. Graph each quadratic: identify the vertex, axis of symmetry, intercepts, domain, range, and max. or min. value.

a. $f(x) = -2(x + 1)^2 + 8$ b. $g(x) = 2x^2 - 4x - 6$

5. Graph each function: identify the intercept(s), asymptote(s), domain and range.

a. $f(x) = 2^{x+3}$ b. $g(x) = \log_3 x$

6. Evaluate each given $f(x) = 2x^2 - 3x$, $g(x) = \frac{1}{2}x + 3$, $h(x) = \sqrt{x - 4}$, j(x) = x - 3, $k(x) = \frac{1}{x + 3}$:

a.
$$(f \circ j)(x)$$
 b. $(g \circ h)(8)$

c.
$$(f+g)(-2)$$
 d. $g^{-1}(-1)$

- 7. Using the functions in number 6, find each:
- a. $g^{-1}(x)$ b. The domain and range of $k^{-1}(x)$

8. Alan and Tim can build a complete covered patio together in 56 hours. Alan could build the patio himself 15 hours quicker that Tim. How long would it take Tim to build the wall himself?

9. A ball player hits a pop fly to center field. The function $h(t) = -16t^2 + 64t + 5$ models the height, h(t), in feet t seconds after he hits the ball. Find the maximum height the ball will reach and how long it will take to hit the ground (assuming no outfielder catches it).